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Abstract A new effective parameter estimation approach is presented for the Multiscale Kalman
Smoother (MKS) algorithm. As demonstrated, it shows promising potentials in deriving better data products
involving sources from different spatial scales and precisions. The proposed approach employs a multiob-
jective parameter estimation framework, which includes three multiobjective estimation schemes (MO
schemes), rather than using the conventional maximum likelihood scheme (ML scheme), to estimate the
MKS parameters. Unlike the ML scheme, the MO schemes are not built on strict statistical assumptions
related to prediction errors and observation errors, rather, they directly associate the fused data of multiple
scales with multiple objective functions. In the MO schemes, objective functions are defined to facilitate
consistency among the fused data at multiple scales and the input data at their original scales as well in
terms of spatial patterns and magnitudes. Merits of the new approach are evaluated through a Monte Carlo
experiment and a series of comparison analyses using synthetic precipitation data that contain noises which
follow either the multiplicative error model or the additive error model. Our results show that the MKS fused
precipitation performs better using the MO framework. Improvements are particularly significant for the
fused precipitation associated with fine spatial resolutions. This is due mainly to the adoption of more crite-
ria and constraints in the MO framework. The weakness of the original ML scheme, arising from its blindly
putting more weights into the data associated with finer resolutions, is circumvented in the proposed new
MO framework.

1. Introduction

Most of weather-driven environmental simulations require reliable precipitation data as input, which signifi-
cantly affect terrestrial water and energy budget, land-atmosphere interactions, ecological processes and
some biogeochemical processes. The quality of precipitation data has direct and essential impacts on the
reliability and applicability of simulation results. However, none of the precipitation data are good enough
to completely satisfy the expectations of environmental simulations, which is mainly due to the limits asso-
ciated with precipitation measurements, typically including rain gauges, weather radars and weather satel-
lites. Rain gauges are reliable at local points but poor at capturing spatial patterns of the precipitation. On
the contrary, weather radars are good at capturing spatial patterns but not that good in terms of the magni-
tudes. Moreover, weather radars have limited spatial coverage and do not work well in mountainous
regions. Weather satellites have extensive spatial coverage but present uneven spatial and temporal resolu-
tions. For example, the polar orbit satellites with microwave imagers measure precipitation at higher spatial
resolutions but lower temporal resolutions, while the geostationary orbit satellites with infrared imagers
result in data with coarser spatial resolutions but finer temporal resolutions. In addition to the representabil-
ity of measurement instruments, uncertainty is another issue of the precipitation data, even for those pro-
duced with cutting-edge technologies, such as satellite-borne sensors [Tian and Peters-Lidard, 2010]. To
improve the environmental simulations, it is fundamentally important to derive precipitation data products
with better representability and lower uncertainty through data fusion in which multiple precipitation meas-
urements, and simulated precipitation by numerical weather models, are effectively combined.

Fusion of the precipitation data is generally associated with multiple scales due to two reasons: (1) sensors
available for precipitation measurements are associated with multiple spatial scales; and (2) data processing
algorithms and weather/climate models are usually operated at different scales. Additionally, environmental
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applications may require precipitation
data at yet another spatial scale. Thus,
data fusion algorithms for precipitation
should be able to deal with input and
output data at multiple scales. Further-
more, fusion of the data from different
sources with different scales should
make it possible to extract useful infor-
mation of different sources and then
have the information effectively com-
bined to form a new data set at the
same or different spatial scales for
applications. This would be especially
beneficial for hydrological and land
surface simulations. The current precip-
itation data products may be good at
either spatial patterns or magnitudes
but hardly at both [Jayakrishnan et al.,
2004; Voisin et al., 2008]. For example,
the precipitation data product of the
National Weather Service (NWS) Next
Generation Weather Radar (NEXRAD)
Multisensor Precipitation Estimation
(MPE) has a fine spatial resolution of
4 km, which is favorable in describing
spatial patterns of the precipitation.
However, it is noisy and sometimes has
large biases in terms of its magnitude
compared to the rain gauge measure-

ments [Wang et al., 2008; Nan et al., 2010]. On the other hand, precipitation data products of North Ameri-
can Land Data Assimilation System (NLDAS) are better at describing magnitude since they are determined
based on Climate Prediction Center (CPC) daily gauged precipitation data [Cosgrove et al., 2003]. But they
are not very good at describing the spatial patterns due to their relatively coarse spatial resolution, e.g.,
0.125�. It is reasonable to infer that more reliable precipitation data products can be derived by combining
the NEXRAD MPE data with the NLDAS data through a multiscale data fusion approach [Nan et al., 2010].
Moreover, if precipitation data products at multiple spatial resolutions are required, the advantages of
employing a multiscale precipitation fusion approach become obvious.

Among the data fusion algorithms such as artificial neural network [Sorooshian et al., 2000], Kalman Filter
[Smith and Krajewski, 1991; Ushio et al., 2009] and statistical methods [Ly et al., 2011], the MKS algorithm
[Chou and Willsky, 1991; Chou et al., 1994; Willsky, 2002; Parada and Liang, 2004] offers many good features
which are particularly important for conducting the multiscale precipitation data fusion as illustrated in
[Wang et al., 2011] through a systematic investigation and analyses. The MKS algorithm is based on the
theory of Markov random field over space. It can easily fuse multiresolution (multiscale) data organized by a
quadtree, as shown in Figure 1. With this MKS algorithm, fused precipitation at any scale represented by the
quadtree can be derived. The MKS algorithm, also bearing the name of scale-recursive estimation (SRE)
method, has been examined in multiscale precipitation data fusion applications and demonstrated great
potentials. For example, Gorenburg et al. [2001] evaluated the SRE method in the assimilation of radar pre-
cipitation data and satellite precipitation data, which are at 2.5 km and 15 km respectively. The SRE method
was able to reproduce withheld radar measurements through the fused precipitation data. Such kind of
evaluation has also been done by Van de Vyver and Roulin [2009] with precipitation data of weather radar
and satellite microwave measurements. Similarly, Bocchiola [2007] examined SRE method upon fusing pre-
cipitation measurements of TMI radiometer and PR radar boarded on the TRMM satellite and NEXRAD radar.
In addition to studies in the spatial domain, SRE method has also been evaluated in the time domain to
fuse precipitation data at varying temporal resolutions [Tustison et al., 2002]. Moreover, the MKS algorithm

Figure 1. An example of multiscale tree: a two-dimensional multiscale tree with
three spatial scales. For node t at scale 1, t�c represents its parent node and tan

(n51; 2; 3; 4) represents its child nodes. Without a parent, the node at scale 0 (i.e.,
the coarsest resolution) is called a root node; without any child nodes, the nodes
at scale 2 (i.e., the finest resolution) are called leaf node.
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has also been applied to soil moisture data assimilation [Kumar, 1999; Parada and Liang, 2004, 2008], altime-
try data fusion [Slatton et al., 2001, 2002] and imagery data fusion [Huang et al., 2002; Simone et al. 2000]. A
comprehensive review is provided by Montzka et al. [2012] for conducting data assimilation and data fusion
for the terrestrial system in which the strength of the MKS-based algorithm [e.g., Parada and Liang, 2004;
Wang et al., 2011] for multiscale data assimilation and fusion is discussed. In fact, all of the studies have
shown that more reliable data products can be derived with the MKS-based algorithm by fusing or assimi-
lating multiscale data if the algorithm parameters are determined properly.

MKS is an algorithm with high degree of freedom due to its relatively large number of parameters, which
are involved in characterizing measurement errors, prediction errors and state-space equations. Perform-
ance of the MKS algorithm, like other algorithms, depends critically on proper estimations of these parame-
ters. The Maximum Likelihood (ML) based methods are typically used to estimate parameters of the MKS
algorithm because of its simple statistical formulation and high computational efficiency [Chou, 1996; Diga-
lakis et al., 1993; Bocchiola, 2007]. Applying the Expectation-Maximization (EM) method, parameters of the
MKS algorithm can be determined through iterations when there are latent variables involved in the MKS
model framework [e.g., Kannan et al., 2000; Parada and Liang, 2004; Gupta et al., 2006]. However, it is quite
often that both the ML and EM methods only find local optima but not global optima in practical applica-
tions. This is mainly because the ML and EM methods assume that the measurement errors and prediction
errors are independent and follow zero-mean Gaussian distributions. Such assumptions make the derivation
of the likelihood functions straightforward and simple to implement, but they are too strong to be generally
satisfied by the precipitation data. This shortcoming hinders the MKS algorithm from fusing the precipita-
tion data optimally at all spatial scales when the ML method is applied in combination with the EM method,
as illustrated and discussed in [Wang et al., 2011]. In fact, Wang et al. [2011] showed that the fused precipita-
tion data were significantly improved at the coarse resolution (e.g., 1/8�) while the improvement at the fine
resolution (e.g., 1/32�) is limited or even deteriorated if the finer resolution data are much noisier than the
coarse resolution data. This is due to a combined effect that only local optimal parameters are found and
that too much weight is placed on the finer resolution precipitation data by the EM method associated with
the MKS algorithm, which is fine if the data’s noisy levels at the different scales are comparable. In this
study, we present a new framework to improve the parameter estimations for the MKS algorithm so that
the weakness of the ML method is circumvented or at least mitigated while the strength of the ML method
is kept and that the improvements are achieved at multiple scales (i.e., at both coarse and fine scales).

The new parameter estimation framework is primarily designed to improve the performance of the MKS
algorithm at finer resolutions in the multiscale data fusion applications. The new framework is based on a
multiobjective optimization approach, and comprises three schemes that are referred as MO framework or
MO schemes. Similarly, we refer the EM method that is used to estimate the maximum likelihood parame-
ters of the MKS algorithm as ML scheme. Different from maximizing only a log-likelihood function in the ML
scheme, the MO framework maximizes a number of objective functions, which are metrics directly related
to the objectives of the multiscale precipitation data fusion. To solve the multiobjective optimization prob-
lem investigated in this study, we use a multiobjective particle swarm optimization (MOPSO) algorithm. The
particle swarm optimization (PSO) algorithm was firstly proposed by Kennedy and Eberhart [1995]. MOPSO
has been shown to be effective and efficient for optimizing hydrological parameters [Gill et al., 2006] for dif-
ferent multiobjective optimization problems [Hu and Eberhart, 2002; Hu et al., 2003]. In this study, we have
designed and implemented a parallel MOPSO algorithm to solve the resulting multiobjective optimization
problem.

In the remaining part of this paper, a brief description of the MKS algorithm and the EM scheme is provided
in section 2 to have this paper self-contained. Detailed description and formulation of the MO framework
are presented in section 3. Evaluations of the MO schemes are presented in section 4 through a Monte Carlo
experiment and a series of comparison experiments that make use of both the multiplicative error and addi-
tive error models. Discussions and conclusions of this study are provided in section 5.

2. Descriptions of the MKS Algorithm and the ML Scheme

2.1. The MKS Algorithm
The MKS algorithm is able to fuse multidimensional data or one-dimensional data. In this study, the MKS
algorithm is applied to the one-dimensional precipitation data, which means each value represents the
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precipitation amount of one grid at one time instance. In the following mathematical descriptions, all nota-
tions represent scalars instead of vectors. In this study, a scale means a spatial resolution of the precipitation
data. The MKS algorithm includes a fine-to-coarse sweep of the Kalman filtering step and a coarse-to-fine
sweep of the Kalman smoothing step. Both sweeps are conducted along a multiscale tree, as shown in Fig-
ure 1. In the scale domain, a linear state-space model that relates measurements at neighboring resolutions
is given as follows:

XðtÞ5AðtÞXðt�cÞ1wðtÞ (1)

PðtÞ5A2ðtÞPðt�cÞ1QðtÞ (2)

where X(t) and Xðt�cÞ represent the precipitation estimates at a child node and its parent node, respectively,
w(t) is the prediction error following Nð0;QðtÞÞ, Q(t) is the variance of w(t), P(t) and Pðt�cÞ are the error var-
iances of X(t) and Xðt�cÞ, and A(t) is a transition operator mapping precipitation amount from a parent node
to a child node.

Given the prior estimates of the precipitation amount at the root node X(0) and the associated error varian-
ces, the unconditional estimates of precipitation and their error variances at the remaining nodes of the
multiscale tree can be computed using equations (1) and (2). Such a step is referred as initialization. After
that, an upward sweep is conducted from the leaf nodes toward the root node with the inverted forms of
equations (1) and (2) and a measurement equation

YðtÞ5CðtÞXðtÞ1DðtÞ1vðtÞ (3)

where Y(t) is the measurement at node t, C(t) is a transition operator mapping estimated precipitation amount
to the measurement, D(t) is a bias compensation term, and v(t) is the variance of measurement error following
Nð0; RðtÞÞ where R(t) is the error variance of v(t). The D(t) term is introduced to minimize impacts of the
inconsistency (e.g., bias) among measurements at different scales on the fused precipitation [Parada and
Liang, 2004; Wang et al., 2011]. This step is the Kalman filtering at the spatial scale domain. Once it is done, all
unconditional estimates of the precipitation have been updated according to measurements through which
the finer resolution measurement data add their influences to the estimates of the precipitation at coarser res-
olutions. Following the upward sweep, a downward sweep is conducted from the root node toward the leaf
nodes to refine the precipitation estimates by including the influences of the measurement data at coarser
resolutions through Kalman smoothing. For a complete formulation of the MKS algorithm for general pur-
poses, readers are referred to Kannan et al. [2000] and Parada and Liang [2004].

In a simple case that measurements are available at all nodes of a multiscale tree (denoted with T ), the
MKS algorithm has a set of parameters, including Rð0Þ (initial value of the error variance of the root node
P(0)) and fAðtÞ; CðtÞ;QðtÞ; RðtÞjt 2 T g. Since all measurements have been converted into precipitation
amounts, we can set AðtÞ51:0 and CðtÞ51:0 for all nodes in the precipitation data fusion application. How-
ever, the rest of the parameters, namely Rð0Þ, R(t) and Q(t) need to be estimated. In reality, R(t) and Q(t)
may vary over space. If R(t) and Q(t) are to be estimated at every node, the number of parameters would be
more than the number of measurements, i.e., the number of nodes with valid measurements. In this
instance, it would be hard to adequately estimate the parameters. In order to resolve this issue, we assume
that R(t) and Q(t) are scale homogeneous. In other words, they are, respectively, identical for each node at
the same scale. Consequently, the number of parameters is significantly reduced and is much lower than
the number of measurements. The parameters can thus be estimated based on the available measurements
without any further assumptions or constraints.

2.2. The ML Scheme
Assuming that the relationships described by equations (1) and (2) are independently held at all nodes of a
multiscale tree (T ), the log-likelihood function can be expressed as follows, where we denote the parameter
set of the MKS algorithm as h (h5fXð0Þ;Rð0Þ; RðtÞ;QðtÞjt 2 T g)

LðX; YjhÞ52
1
2

X
t2T c

flog QðtÞð Þ1 XðtÞ2AðtÞX t�cð Þ½ �2QðtÞ21g

2
1
2

X
t2T m

flog RðtÞð Þ1 YðtÞ2CðtÞXðtÞ2DðtÞ½ �2RðtÞ21g1F

(4)
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where T c represents a subset of T except the root node, T m represents a subset of T with measurements,
Y represents measurements, and F is a constant. Given measurements Y, precipitation estimates X are
dependents of the parameter set h. Therefore, LðX; YjhÞ can be regarded as a function of h with given
measurements and accordingly h can be estimated by maximizing LðX; YjhÞ.

In the ML scheme, parameter set h is determined using the EM algorithm, which includes an expectation
step (E-step) and a maximization step (M-step). In the multiscale precipitation data fusion applications, one
cycle of the upward sweep and the downward sweep of the MKS algorithm serves as the E-step, which
computes smoothed estimates of precipitation as statistical expectation. After the E-step, parameters h are
the only free variables in LðX; YjhÞ. The M-step is to maximize the log-likelihood (equation (4)) by adjusting
the parameters using a numerical approach, such as gradient-based methods. Details about the ML scheme
with the EM algorithm can be found in Kannan et al. [2000].

3. Multiobjective (MO) Parameter Estimation Framework

Our MO framework for the MKS algorithm is explicitly constructed on the expectation of multiscale precipita-
tion data fusion. Generally, multiscale precipitation data fusion is to derive new precipitation products, which
are expected to be better in representing the spatial patterns and magnitudes of the precipitation at the origi-
nal scales of the input data or at any other scales depending on applications. But, on the other hand, these
fused data sets should also be expected to inherit the characteristics of the spatial patterns and the magnitudes
of their original data where appropriate. In principle, if the parameters of the MKS algorithm are reasonably
estimated to represent the errors associated with each data source, then the spatial patterns and magnitudes
of the fused precipitation data should be consistent with each other at all output scales. However, due to the
limitations discussed in section 1, neither the popular maximum likelihood method nor the EM method is suffi-
ciently effective in finding the MKS parameters in practical applications because the maxima obtained are local,
and the methods usually overweigh observations from finer resolutions. Our idea is thus to force the search to
find a better parameter set by introducing more physically sound constraints. To this end, we introduce two
objective functions related to spatial patterns for a typical case of fusing two data sources. To avoid over
smoothing, we also introduce some other objective functions to maximize maximum precipitation or maxi-
mum information in the fused precipitation data.

In a multiscale precipitation data fusion, the consistency in spatial patterns among output scales can be
measured either with correlation (Corr) or root mean square error (RMSE). The former focuses more on spa-
tial patterns while the latter focuses more on magnitudes. Correlation has intuitive statistical meaning and
fixed lower and upper boundaries, i.e., 21.0 and 1.0. For a condition of having no biases, correlation usually
has an approximately monotonic relationship with RMSE in the multiscale precipitation data fusion using
our MKS algorithm [Parada and Liang, 2004] since the bias is mainly removed by the D term in equation (3)
as demonstrated in Wang et al. [2011]. That is, for the same data, RMSE decreases with an increase in Corr.
Therefore, correlation would be a proper measure of the consistency among fused precipitation data.

In order to calculate the correlation of two data sets associated with two different spatial scales (e.g., 1/8�

and 1/32�), one can either aggregate the finer resolution data of 1/32� into the coarser resolution (i.e., 1/8�)
or disaggregate the coarser resolution data of 1/8� into the finer resolution (i.e., 1/32�). Subsequently, one
can calculate the correlations at both of these resolutions. In this study, we try to obtain the correlation as
high as possible between two fused precipitation data sets at 1/8�. For example, a value of 1.0 indicates
that the finer fused precipitation data (e.g., 1/32�) has a perfect consistency with the fused precipitation
data at the coarser resolution (e.g., 1/8�). For the correlation at 1/32�, we try to have the correlation between
the two fused precipitation data fields close to a target correlation value, which is close to but less than 1.0.
For example, the target correlation can be 0.9. This implies that the spatial pattern of the fused precipitation
data field at the finer resolution is roughly 90% consistent with the fused precipitation data field at the
coarser resolution while the 10% differences are due to the variations associated with the details of the
fused data at the finer resolution compared to the fused data at the coarser resolution. In this way, one can
basically use the correlation measure to gauge the consistency among the fused precipitation data sets at
two different spatial scales, i.e., at the fine and coarse resolutions.

The MKS algorithm is a smoother by nature. If parameters are not well estimated, there is a risk that the
fused precipitation data are over smoothed. Once the oversmoothing happens, the maximum values of the
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fused precipitation would be significantly smaller than those without being oversmoothed. Meanwhile, the
information content of precipitation data will be partially lost. Thus it is important to avoid such over-
smoothing from happening. Two approaches are proposed within the MO framework: one approach is to
maximize the largest values of fused precipitation data at all of output scales; and the other is to maximize
the Shannon information entropy of the fused precipitation data at all output scales. Advantages and disad-
vantages of these two approaches are discussed and illustrated in section 4.

Based on the discussions above, we propose to improve the estimation of the MKS parameters by formulat-
ing it as a multiobjective optimization problem, in which we introduce two groups of objective functions.
The first group includes a number of spatial correlations as measures of consistency among the fused pre-
cipitation data at the output scales. The second group includes a number of maximization functions of
either the largest value or the information entropy of the fused precipitation data at the output scales. In
the following, specific objective functions are given for a simple case with two precipitation data sources.
For notational convenience, we specify X to represent precipitation data; superscript – and 1 to represent,
respectively, before and after the data fusion; subscript c and f to represent, respectively, a coarse and a fine
resolution; c ! f to represent disaggregation from a coarse resolution to a fine resolution and f ! c to rep-
resent aggregation from a fine resolution to a coarse resolution. Estimation of the MKS parameters can be
achieved via maximizing the following four objective functions if maximization of the largest value of the
fused precipitation data field is used:

g1ðhÞ5Corr X1
c ; X1

f!c

� �
(5)

g2ðhÞ52jCorr X1
f ; X1

c!f

� �
2qj (6)

g3ðhÞ5max ðX1
c Þ (7)

g4ðhÞ5max ðX1
f Þ (8)

in which, g1ðhÞ measures the consistency of the fused precipitation data at the coarse resolution; g2ðhÞ
measures the consistency of the fused precipitation data at the fine resolution, q is a slack parameter to
relax the consistency requirement at the finer resolution; g3ðhÞ and g4ðhÞ are the maximum values of the
fused precipitation data at the coarse and the fine resolutions, respectively. The slack parameter, q, is added
to avoid oversmoothing at the finer resolution. Theoretically speaking, the fused data at a fine resolution
are able to keep more details of the precipitation field than those at coarser spatial resolutions. If the fused
data at a fine resolution are aggregated into a coarser resolution, the aggregated data would be exactly the
same as the fused precipitation data at the coarser resolution. If, however, the fused precipitation data at a
coarse resolution are disaggregated into a finer resolution, the disaggregated data cannot be the same as
the fused data at the finer resolution. The correlation between the disaggregated data and the fused data
at the finer resolution will be less than 1.0 even under a theoretical condition. Therefore, the slack parame-
ter, q, is needed in equation (6).

If maximization of information entropy is used, g3ðhÞ and g4ðhÞ will be replaced with g5ðhÞ and g6ðhÞ as
shown below:

g5ðhÞ52
Xn

i51

pðx1
c;iÞ log pðx1

c;iÞ (9)

g6ðhÞ52
Xn

i51

pðx1
f ;iÞ log pðx1

f ;iÞ (10)

where n is the number of precipitation bins and i is the index of precipitation bin. In this study, precipitation
values are divided into equal bins with a bin size of 0.1 mm.

The multiobjective optimization problem formulated with equations (5)–(8) (or (9) and (10)) can be solved
in many ways. In this study, it is solved with a multiobjective particle swarm optimization (MOPSO) algo-
rithm [Wang, 2011]. Similar to most multiobjective optimization algorithms, the MOPSO algorithm returns
not a single optimal solution but a set of Pareto frontiers. However, only one optimal parameter set is to be
used in the precipitation data fusion using the MKS algorithm. Our strategy of selecting the optimal solution
from the Pareto frontiers includes two steps: (1) select solutions with the largest g1ðhÞ1g2ðhÞ, and (2) find
the solution with the largest g3ðhÞ1g4ðhÞ or g5ðhÞ1g6ðhÞ from those identified in step (1). Note that the
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solution of our proposed MO framework can be obtained by any multiobjective optimization algorithm,
such as the genetic algorithm or the simulated annealing algorithm.

We hypothesize that by applying the MO framework to the four objective functions described by equations
(5)–(8), we can not only obtain better MKS parameter estimates, but also these estimates are able to keep
the essential strength of those associated with the ML scheme and circumvent, at least to a large extent,
the weakness of the ML scheme. This hypothesis is also assessed by adding the likelihood function, i.e.,
equation (4), as one more objective function in section 4.

4. Evaluations

4.1. Experiment Design
Two types of experiments are designed to evaluate the ML scheme and the proposed MO approach. The
first is a Monte Carlo experiment, which demonstrates the limitation of the ML scheme and illustrates the
rationality of the proposed MO framework. The second is a comparison experiment, which includes
between-group comparisons and in-group comparisons. The effectiveness of the ML scheme and the MO
framework is statistically evaluated through between-group comparisons. The two approaches of avoiding
oversmoothing are evaluated through the in-group comparisons.

To make the analysis of this study representative of real applications, we select a large study domain (Figure
2), bounded by longitudes (88�W, 84�W) and latitudes (37.75�N, 41.75�N). Enclosing the entire state of Indi-
ana, the domain includes 128 3 128 grids at 1/32� resolution and 32 3 32 grids at 1/8� resolution. The aver-
age annual precipitation in this area is about 1,000 mm. Precipitation is relatively evenly distributed
throughout a year. Typically, precipitation is steady and of long duration in winter and early spring and
short but of high intensity during late spring and summer.

Synthetic noisy precipitation data are used in both types of experiments. It is always a concern as to which
error model, e.g., additive error model or multiplicative error model, to employ when describing precipita-
tion errors for generating synthetic precipitation data or perturbing precipitation data. Both additive and
multiplicative error models have been reviewed by Tian et al. [2013]. The MKS smoother usually works with
additive errors following a Gaussian distribution due to the nature of Kalman smoother. However, the errors
of precipitation measurements from a single instrument, such as radar, are typically described by multiplica-
tive error models. In other words, the multiplicative errors follow the lognormal distribution and not the
Gaussian distribution. For such a situation, the multiplicative errors need to be transformed into the additive

Gaussian errors by taking a logarithm
operation to all precipitation amounts
so that the MKS algorithm can be
applied. After data fusion, the fused
values need to be transformed back
into the precipitation amounts by tak-
ing an exponentiation operation. Most
of the precipitation data products,
such as NLDAS 0.125� precipitation,
are derived from multiple measure-
ments. NLDAS precipitation combines
measurements of NEXRAD Stage II,
CPC daily rain gauge and even
weather satellite through a sophisti-
cated processing logic. In such a case,
it becomes a bit difficult to determine
the statistical distribution of the errors
for such a composite data product.
Unless a thorough investigation is
conducted based on a high-density
ground network measurements,
assuming an additive error model is a

Figure 2. Map of experiment domain. Gray mesh represents 32 3 32 grids at 1/8�

resolution. This map illustrates the NEXRAD MPE precipitation data at 09Z 22 Sep-
tember 2003, which are used as the true data in the Monte Carlo experiment in sec-
tion 4.2. The unit of precipitation data is mm/h.
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reasonable starting point for fusing multiple precipitation data products. Such an assumption may intro-
duce suboptimal instead of optimal results. However, choice of the error model is only one of the many
potential factors affecting the optimality of the precipitation data fusion results in the real world applica-
tions. Moreover, even if the precipitation errors do not strictly follow a multiplicative error model nor an
additive error model, the additive error model associated with the MKS algorithm can still be employed to
conduct the data fusion since one can always transform a non-Gaussian distribution to a Gaussian distribu-
tion before applying the MKS algorithm.

In this study, both the additive and multiplicative error models are used in evaluating the performances of
the ML scheme and MO schemes. Synthetic noisy data are generated based on a set of hourly NEXRAD MPE
precipitation data. The generated noises are added or multiplied to the MPE precipitation data. The MPE
data, which are at a spatial resolution of 4 km and in a specific data format, namely XMRG, are projected
into the longitude-latitude coordinate system and resampled into 1/32� and 1/8� resolutions, respectively.
In the experiments using the additive error model, the noises are generated based on the Gaussian distribu-
tions with zero mean and different standard deviations that are prescribed according to the MPE data. In
the experiments using the multiplicative error model, errors are generated based on the lognormal distribu-
tion with mean of 1.0 and standard deviation related to the mean and the standard deviation of the MPE
data.

In the experiments with the additive error model, the standard deviations are set to be proportional to the
standard deviations of the MPE data. For example, at hour k one has the MPE precipitation data (i.e.,
assumed to be the true data) Xk of a two-dimensional (2-D) field based on which one can calculate the
standard deviation of Xk, denoted as sk. Then, white noises can be sampled from the Gaussian distributions
of Nð0; niskÞ, where ni, called noise level hereafter, is a multiple of sk that controls the level of perturbation.
The sampled values (i.e., the noises) from Nð0; niskÞ are then added to Xk to obtain the synthetically gener-
ated noisy precipitation data sets that correspond to different noisy levels. If ni 5 1, the standard deviation
of added noises is actually the same as the standard deviation of the real MPE precipitation data of the kth

hour. Notice that the synthetically generated precipitation value may be negative if the generated white
noise has a large negative value. In such a situation, a new value of the white noise will be generated until
the synthetic precipitation value is no longer negative. In other words, the noises generated are from trun-
cated Gaussian distributions. This adaptive approach brings three favorable features to the synthetic precip-
itation data sets. First, the magnitudes of generated data are guaranteed to be nonnegative, which is
essential to describe precipitation. Second, the added noises are generated based on normal distribution
but not strictly normally distributed due to the noise regeneration procedure. Third, it is easy to control the
magnitudes of the noises by adjusting the noise level, i.e., ni. For details of this synthetic data generation
method and the properties of its generated precipitation data, readers are referred to the work by Wang
et al. [2011].

It is straightforward to generate synthetic precipitation data with the multiplicative errors. Magnitudes of
the random multiplicative errors are related to the mean and the standard deviation of precipitation field
within the experiment domain (denoted as l0 and r0 respectively). The synthesized precipitation
x25x0 � exp ð�Þ, in which x0 is the MPE precipitation and � is a random number following N 0; a � r0

l0

� �
. In

the formulation with the multiplicative errors, i.e., exp ð�Þ, a is an adjustable factor that controls the magni-
tude of errors. In this study, it is set to 0.5.

We use synthetic precipitation data sets to evaluate the MO schemes and the ML scheme mainly to take
the advantage of being able to control magnitudes of the errors/noises in the generated precipitation data
sets. The approach of using synthetic data has been widely used in data assimilation study for the conven-
ience of performance evaluation [e.g., Walker and Houser, 2004].

In all experiments, we apply the MKS algorithm to fuse one set of precipitation data at a coarse resolution,
i.e., 1/8�, with the other set of precipitation data at a fine resolution, i.e., 1/32�. Based on the NEXRAD MPE
precipitation data, we have two sets of the synthetic precipitation data generated for an entire year of 2003
at both the coarse (1/8�) and the fine (1/32�) resolutions. There is a total number of 2246 precipitation
events/fields/images in each set of the synthetic data. As illustrated in Figure 1, the input data have to be
organized in a multiscale tree before applying the MKS algorithm. The total number of spatial scales in such
a multiscale tree depends on the size of the study domain and the spatial resolutions of the input data. In
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this study, the multiscale tree has 8 scales indexing from 0 to 7. Resolutions of 1/8� and 1/32� correspond
to, respectively, scales 5 and 7 of the multiscale tree. Therefore, we also call the data at 1/8� and 1/32� reso-
lutions as scale 5 data and scale 7 data, respectively.

In this study, three series of synthetic precipitation data sets at scale 5 are generated with the noise levels
of n551.0, 2.0, and 3.0 and four series of synthetic precipitation data sets at scale 7 are generated with the
noise levels of n751.0, 2.0, 3.0 and 4.0. Each data series includes 2246 synthetic hourly precipitation fields
over the study domain. There is one more noise level employed at scale 7 to describe the reality that precip-
itation data at finer resolutions may be noisier than those at coarser resolutions. It is worth mentioning
that only noises not biases are introduced to the synthetic precipitation data sets. This is because our MKS
algorithm [Parada and Liang, 2004] can effectively remove the biases as illustrated in the study by Wang
et al. [2011].

The goal of the multiscale precipitation data fusion is to improve the spatial pattern and the
magnitude of precipitation data fields at multiple scales. To evaluate whether such a goal is achieved, we
use DCorrs5CorrðXtrue

s ; X1
s Þ2CorrðXtrue

s ; X2
s Þ and DRMSEs5RMSEðXtrue

s ; X2
s Þ2RMSEðXtrue

s ; X1
s Þ as the metrics at

scale s, where Xtrue
s represents the true precipitation amounts, X2

s represents the synthetically generated
precipitation values, and X1

s represents the fused precipitation values. CorrðXtrue
s ; X2

s Þ and CorrðXtrue
s ; X1

s Þ are
also expressed as Corr2

s and Corr1
s for short. Similarly, RMSEðXtrue

s ; X2
s Þ and RMSEðXtrue

s ; X1
s Þ are expressed as

RMSE2
s and RMSE1

s for short as well. The effectiveness of the ML scheme and the MO schemes is evaluated
using DCorr and DRMSE. If a parameter estimation scheme helps resulting in a larger DCorr, it means that
this scheme is better than the other schemes for improving the spatial pattern of the precipitation data.
Similarly, if a parameter estimation scheme helps resulting in a larger DRMSE, it means this scheme is better
than the other scheme for improving the magnitudes of the precipitation data.

To facilitate the discussion, we use box plots to illustrate most of experiment results obtained. Box plots
graphically depict distributions of samples with the lower (25th) quartile, median, the upper (75th) quartile,
1.5 IQR (interquartile range) of the lower quartile, and 1.5 IQR of the upper quartile. If the samples approxi-
mately follow a normal distribution, over 99% of them would fall within the upper and the lower whiskers
shown between the 1.5 IQRs of the lower quartile and the upper quartile. In addition, box plots also mark
the mean value of each statistical variable, which is used in the result analysis for the comparison experi-
ments in section 4.3. Figure 3 shows the box plots for correlation (vertical axes) in the two upper plots and
RMSE (vertical axes) in the two lower plots, which are obtained between the 2246 true and synthetic precip-
itation fields of 2003. The horizontal axes in Figure 3 represent the values taken for n5 and n7, respectively.
From Figure 3, one can see, as expected, that the correlation (RMSE) decreases (increases) as the variance
increases for both scales 5 and 7, respectively. Figure 3 provides a benchmark as both the MO framework
and the ML scheme are expected to generate higher Corr and lower RMSE, respectively, at scale 5 and scale
7 than the ones shown in Figure 3.

4.2. Monte Carlo Experiment
Monte Carlo experiments are designed to examine the effectiveness of the ML scheme in the multiscale
precipitation data fusion process using the MKS algorithm. Based on the results of the Monte Carlo experi-
ment, one can see the weakness of the ideal/theoretical ML scheme when it is applied to real-world prob-
lems, in which assumptions and conditions required by the ML scheme and the MKS algorithm are not fully
met. Through the Monte Carlo experiment results, one can also see the rationale in developing the MO
framework for the MKS algorithm.

The Monte Carlo experiment includes three steps: (1) generate a large amount of parameter sets in their
feasible space, (2) conduct data fusion with the generated parameter sets, and (3) compute the correspond-
ing log-likelihood, Corr1

s and RMSE1
s . As described in section 2.2, the ML scheme identifies parameters for

the MKS algorithm by maximizing the log-likelihood function (i.e., equation (4)). If all the requirements/con-
ditions are met, the ML scheme can find the global optimal parameter estimations for the MKS algorithm
used. Thus, Corr1

s (s55 and 7) should reach its maximum and RMSE1
s should reach its minimum when the

log-likelihood reaches its maximum.

Only one representative precipitation event is selected for conducting the Monte Carlo experiment.
Occurred at 09Z 22 September 2003, the precipitation event was a summer storm and covered about 95%
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area of the experiment domain
shown in Figure 2. In the Monte Carlo
experiment, the noise levels, i.e., n5

and n7, are set to 2.0 when generat-
ing the synthetic precipitation data at
both scales 5 and 7. We randomly
sample 1,000,000 parameter sets,
including Rð0Þ, Q(s) (s51, 2, . . ., 7),
and R(s) (s55 and 7) using a uniform
distribution. Since all parameters are
essentially error variances of precipi-
tation data, the feasible range is set
to [0.1, 10.0] for each of them. After
fusing the precipitation data at scales
5 and 7 with all sampled parameters
using the MKS algorithm, we com-
pute the log-likelihood, Corr1

5 , Corr1
7 ;

RMSE2
5 and RMSE1

7 corresponding to
each parameter set.

The effectiveness of the ML scheme is
examined based on the relationships
between the log-likelihood and
Corr1

5 ; Corr1
7 ; RMSE1

5 , and RMSE1
7

respectively, which are shown in the
scatter plots of Figure 4. An essential
finding from Figure 4 is that the ML
scheme has different effectiveness at
scale 5 and scale 7. First, it is much
more effective at scale 5 than at

scale 7. Both Corr1
5 and RMSE1

5 converge to their maximum and minimum values, respectively, when the
log-likelihood approaches its maximum. As an objective function, the log-likelihood defined in equation (4)
appears to be consistent to the correlation and RMSE at the coarser resolution in the Monte Carlo experi-
ment. This provides an affirmation that the ML scheme is more likely to produce parameter estimates for
the MKS algorithm that are in favor of the fused precipitation data products at coarser resolutions.

On the other hand, the ML scheme is not guaranteed to result in parameter estimates which are also effec-
tive for the fused data at scale 7. That is, local optima rather than global optima are likely obtained by the
ML scheme in this case. As shown in Figure 4, Corr1

7 may converge to two substantially different extreme
values when the log-likelihood approaches its maximum. One extreme value is close to the upper bound of
Corr1

7 while the other is close to the lower bound of Corr1
7 (see Figure 4). Similar situation also occurs to

RMSE as shown in Figure 4. If Corr1
7 goes to its lower extreme value or RMSE1

7 goes to its upper extreme
value, there will be no gain through data fusion in terms of improving the spatial patterns and magnitudes
of the precipitation data fields at scale 7. This example clearly indicates that the estimated parameters using
the ML scheme may not work at finer resolutions due to the combined effects of encountering local max-
ima and the required conditions for the algorithm being not fully met in the real-world applications.

Nevertheless, there are no monotonous relationships between the log-likelihood and Corr1
s or RMSE1

s for
s55 and 7. An increase of the log-likelihood does not necessarily mean an increase of Corr1

s or a decrease
of RMSE1

s . In the ML scheme used, the log-likelihood is maximized using the EM algorithm, which usually
stops iterating when the log-likelihood reaches a local maximum or after a given number of iterations is
reached. This example clearly illustrates the limitations of the ML scheme.

Findings from the Monte Carlo experiments are consistent with the results shown in Wang et al. [2011],
where improvements at a coarser resolution are found to be much more significant than those at a finer
resolution. The maximization of the log-likelihood is neither a necessary nor a sufficient condition for
achieving improvements at finer resolutions. If one wants to achieve improvements at multiple scales,

Figure 3. Box plots of the correlation and RMSE between the true and the synthetic
precipitation data in 2003. The horizontal axes of subplots Corr2

5 and RMSE2
5 are the

noise levels at scale 5, i.e., x5; the horizontal axes of subplots Corr2
7 and RMSE2

7 are
noise level at scale 7, i.e., x7. For each box, the bottom and the top represent the
lower (25th) quartile and the upper (75th) quartile, the lower and the upper whiskers
represent 1.5 IQR (interquartile range) of the lower quartile and 1.5 IQR of the upper
quartile, and the black dot represents the mean of Corr or RMSE.
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especially at finer resolutions, there is a
critical need to develop a new scheme
to estimate the parameters of the MKS
algorithm.

4.3. Comparison Experiments
4.3.1. Experiments With Additive
Errors
A series of comparison experiments are
designed to illustrate the strength and
limitations of the proposed MO
schemes as opposed to the ML
scheme. Twelve scenarios of the multi-
scale precipitation data fusion cases
have been constructed by combining
the noisy precipitation data at a fine
resolution with those at a coarser reso-
lution. As described in section 4.1, we
have generated the synthetic noisy pre-
cipitation data at the coarse resolution
(i.e., 1/8�) with three noise levels (i.e.,
n551.0, 2.0 and 3.0) and the synthetic
noisy precipitation data at the fine reso-
lution (i.e., 1/32�) with four noise levels

(i.e., n751.0, 2.0, 3.0 and 4.0). These synthetic precipitation data thus form 12 (i.e., 3 3 4) combinations for con-
ducting the MKS data fusion exercises. For example, the combination of n552:0 with n754:0 indicates a sce-
nario in which a set of noisy precipitation data at 1/8� resolution is fused with much noisier data at 1/32�

resolution. In this particular example, the data noisy level at the fine resolution is about two times of that at
the coarser resolution. Generally speaking, if n5 > n7, it means that the combination mimics a scenario in
which the coarse resolution data are fused with less noisy data at a finer resolution. On the other hand, if
n5 < n7, it means a scenario in which the fine resolution data are fused with less noisy data at a coarser reso-
lution. If n5 5 n7, it means a scenario in which the coarse resolution data is fused with the finer resolution data
that have similar or comparable level of noises. Since the precipitation data at fine resolutions are usually nois-
ier than those at coarser resolutions in the real world, the maximum value of n7 (i.e., 4.0) is thus greater than
that of n5 (i.e., 3.0).

Each of the 12 scenarios has two series of the synthetic precipitation data, one at 1/32� and the other at
1/8� resolutions, for data fusion. Each series includes 2246 noisy precipitation fields for year 2003 in the
study domain. The two series of data are fused field by field using the MKS algorithm. The ML scheme is
firstly used to estimate the parameters. Fused precipitation data with the ML scheme, notated with number
0 hereafter, are used as references to evaluate the MO framework with three approaches that are designed
to avoid the over smoothing problem. Equations (5) and (6) are the core part of the MO framework. No mat-
ter which approach is used, they are part of the objective functions. The first approach uses equations (7)
and (8) to maximize the maximum values of the fused precipitation data (#1 MO scheme); the second
approach uses the likelihood function (equation (4)) in addition to equations (7) and (8) (#2 MO scheme);
and the third approach uses equations (9) and (10) to maximize the information contents of the fused pre-
cipitation data at the output resolutions (#3 MO scheme). For notational convenience, the MO schemes
with the three approaches are marked with number 1, 2, and 3 in the result plots and analyses.

Even though the fused precipitation data sets at any resolution, i.e., from the finest to the coarsest scale of
the multiscale tree (see Figure 1), can be output with the MKS algorithm, we just output the fused precipita-
tion data sets at the 1/8� and 1/32� resolutions to evaluate the effectiveness of the MO framework versus
the ML scheme since the true values (assumed) are available at these two scales. For each scenario, we com-
pute DCorrs and DRMSE (s 5 5, 7) for all of the 2246 precipitation fields (i.e., precipitation images) for
schemes 0, 1, 2, and 3. We then compare the statistics (e.g., mean, quartiles) of DCorrs and DRMSEs, instead
of the DCorrs and DRMSEs for individual precipitation fields among schemes 0, 1, 2, and 3. The large number

Figure 4. Scatter plots of log-likelihood and Corr1
5 , log-likelihood and Corr1

7 , log-
likelihood and RMSE1

5 , and log-likelihood and RMSE1
7 . The horizontal axes of all

subplots are log-likelihood.
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of samples, i.e., 2246, included in the analyses guaranties the statistical significance of our comparison stud-
ies. Thus, the overall performances of each individual scheme (i.e., the MO and ML schemes) can be more
objectively evaluated.

Figure 5 shows the box plots of DCorrs (s 5 5, 7) for the 12 scenarios. Each of them has results obtained with
the ML scheme and the three MO schemes. In Figure 5, if a MO scheme leads to a larger mean of DCorrs, it
indicates that the MO scheme statistically performs better than the ML scheme on average based on the 2246
precipitation fields investigated. Similarly, if a MO schemes results in a larger value of median, it indicates that
the MO scheme performs better than the ML scheme over half of the 2246 precipitation fields for the given
combination of n5 and n7. Otherwise, it indicates that the ML scheme performs better than the MO scheme.

In Figure 5, the differences of DCorr5 between results of the ML scheme and the MO schemes are relatively
small for the 12 scenarios compared with the corresponding differences of DCorr7. In terms of the DCorr5

values, the MO schemes are better in eight scenarios, while the ML scheme is better in 4 scenarios in which
the noise levels at the finer resolution are higher or much higher than those at the coarser resolution. These
four scenarios are (n551; n752), (n551; n753), (n551; n754), and (n552; n754). Such results indicate that
the MO schemes are slightly underperformed than the ML scheme on improving the spatial pattern of the
coarser precipitation data when the coarser precipitation data have better or much better quality than the
finer precipitation data. For the results of scenarios in which n5 � n7, the MO schemes produce larger values
of the mean and the median of DCorr5 than those of the ML scheme. This indicates that the MO schemes
perform better than the ML scheme in terms of improving the spatial patterns of the precipitation data at
coarser resolution when the precipitation data at the coarser resolution have poorer quality than those at
the finer resolution. In addition, the box plots in Figure 5 reveal that the improvements with the MO
schemes are greater than those with the ML scheme when the coarser precipitation data have much poorer
quality than the finer precipitation data.

In Figure 5, it can also be observed that the three MO schemes perform closely in terms of improving
DCorr5. For most of the scenarios, the #2 MO scheme performs slightly better than the #1 MO scheme and
the #3 MO scheme performs slightly better than the #2 MO scheme in terms of the mean, the median, the
upper quartile and the lower quartile. However, the performance differences are very small. Comparing to
the #1 MO scheme, the computational time of the #2 MO scheme is almost doubled because the log-
likelihood function is added as an extra objective function. The gain of the #2 MO scheme over the #1 MO
scheme is almost negligible. This implies that the 4 objective functions of the #1 MO scheme include most
of the information which could be introduced by the log-likelihood function (i.e., equation (4)) for the pur-
pose of improving precipitation data at a coarser resolution. The #3 MO scheme also almost doubles the
computation time of the #1 MO scheme, because computing information entropy of equations (9) and (10)
takes much longer time than finding the maximum precipitation values (equations (7) and (8)). Even though
the gain of the #3 MO scheme is also minor at the coarse resolution compared to the #1 MO scheme, the
gain at the finer resolution is more pronounced as can be seen in Figure 5.

For the fused precipitation at the finer resolution, i.e., 1/32� (scale 7), Figure 5 shows that the MO schemes
perform better or much better than the ML scheme on improving the spatial patterns of the fused precipita-
tion at this resolution for all of the 12 scenarios. It does not matter which situations of the data quality are
at the coarse and fine resolutions, i.e., either n5 > n7, n5 5 n7 or n5 < n7, the mean, the lower and upper
quartiles, the median, and the two whiskers of DCorr7 of the three MO schemes are always significantly
higher than those of the ML scheme. Specifically, all lower quartiles of DCorr7 of the three MO schemes are
larger than the upper whiskers of the corresponding DCorr7 of the ML scheme when n5 > 5n7. This indi-
cates that the MO schemes perform better than the ML scheme for at least 75% of the 2246 precipitation
fields. When n5 < n7, all of the lower whiskers of DCorr7 of the MO schemes are larger than the lower
whiskers of corresponding DCorr7 of the ML scheme, which indicates that the MO schemes perform better
than the ML scheme for at least 90% of the 2246 precipitation fields. This performance of the MO schemes
over the ML scheme becomes even much better when the precipitation data at the finer resolution are
noisier. Although the MO schemes perform slightly worse in 4 scenarios (out of 12 scenarios) than the ML
scheme at the coarser resolution, the fused precipitation data at the coarser resolution with the ML scale
are already quite good as shown in the work of Wang et al. [2011]. Thus, the slight under-performance by
the MO schemes at the coarser resolution is not a cause for concern. Overall, the the MO schemes are prom-
ising for their good performance.

Water Resources Research 10.1002/2013WR014942

WANG AND LIANG VC 2014. American Geophysical Union. All Rights Reserved. 8686



The three MO schemes perform differently in terms of improving the spatial patterns of the precipitation
data at the finer resolution. For most of the scenarios, the mean, median, upper quartile and lower quartile
of the DCorr7 of the #3 MO scheme are clearly larger than the corresponding ones of the #1 and the #2 MO
schemes. The #2 MO scheme performs slightly better than or the same as the #1 MO scheme. This implies
again that the log-likelihood function (i.e., equation (4)) included in the #2 MO scheme does not bring any
significant gain to the fused precipitation data. That is, the effect of the likelihood function is indirectly rep-
resented by those of equations (5)–(8). However, the information entropy represented by equations (9) and
(10) does bring in more information than that by equations (7) and (8) at a cost of doubling the computa-
tional time.

Results of DCorr7 of the ML scheme and the MO schemes for each scenario are also evaluated using
statistical hypothesis tests. Based on the Q-Q plot (figures not shown), we find that none of the distributions
of DCorr7 follow the normal distribution. Therefore, we use the Kolmogorov-Smirnov test to examine the
differences of DCorr7 between the ML scheme and the MO schemes and check whether they are signifi-
cantly different. Unlike the paired t-test, which only works well with normal distributions, the Kolmogorov-
Smirnov test can be used for cases following any type of continuous distributions. The null hypothesis is
that the differences are not significant and the alternative hypothesis is that the differences are significant.

Figure 5. Box plots of DCorr5 and DCorr7 for the precipitaiton results with the ML scheme (in black color) and the MO schemes (in red, green, and blue colors) for the 12 scenarios with
the additive error model. In the labels of the horizontal axes of all subplots, C denotes DCorr and the supper scripts 0, 1, 2, and 3 denote the ML scheme and the MO schemes. The title
of each subplot describes the combination of noise levels at scale 5 and scale 7 of the scenario. Descriptions of symbols are the same as those in Figure 3.
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Results of the Kolmogorov-Smirnov test (at 1% significant level) show that the distribution differences of
DCorr7 between the MO schemes and the ML scheme are significant for all of the 12 scenarios shown in
Figure 5. These results confirm again the significantly better performances of the MO schemes at the finer
resolution. Therefore, we can infer that the MO schemes are significantly better than the ML scheme in
deriving fused precipitation data at finer resolutions in terms of improving the spatial patterns of the
precipitation. The #1 MO scheme is a better choice for limited computational resources and the #3 MO
scheme is a better choice when computational resources are sufficient.

Figure 6 shows the box plots of DRMSEs (s 5 5, 7) for the 12 scenarios. Like Figure 5, each scenario represents
the fused precipitation data using the MKS algorithm with the ML scheme and the three MO schemes. In Fig-
ure 6, if the MO schemes lead to larger values of DRMSEs , it indicates that statistically, the MO schemes per-
form better than the ML scheme. Otherwise, the MO schemes are statistically not as good as the ML scheme.
In addition, if any of the MO schemes results in higher values of DRMSEs , it means that the MO scheme has a
better choice of the objective functions in terms of improving the magnitudes of fused precipitation data.

In Figure 6, the differences of DRMSE5 between the ML scheme and the MO schemes are relatively small for
all of the 12 scenarios compared to the corresponding differences of DRMSE7. Which scheme performs better
also depends on the noise levels at both scales. Specifically, the performance of the MO schemes is slightly
better than that of the ML scheme when n5 > n7, i.e., for the combinations of n552:0 and n751:0; n553:0
and n751:0, and n553:0 and n752:0. This indicates that the MO schemes are better choices than the ML
scheme when fusing much noisier precipitation data at a coarser resolution with less noisy data at a finer reso-
lution. When n5 � n7, i.e., when the precipitation data at the fine resolution is noisier than that at the coarser
resolution, the performance of the MO schemes is slightly worse than that of the ML scheme. For example,
the lower and the upper quartiles and the medians of DRMSE5 of the MO schemes are smaller than those of
DRMSE5 of the ML scheme for the scenarios of n55n752.0 and 3.0, n551:0 and n752:0; n551:0 and n753:0;
n551:0 and n754:0; n552:0 and n753:0; n552:0 and n754:0, and n553:0 and n754:0. But most of the dif-
ferences are very small or negligible. Since the fused precipitation data at the coarser resolution with the ML
scheme are already quite good as shown in the work of Wang et al. [2011], the smaller values of DRMSE5 with
the MO schemes than those with the ML scheme are not a cause for concern. Among the three MO schemes,
the #1 and #2 MO schemes perform very closely. This once again shows that the objective functions of #1 MO
scheme are sufficient enough and there is no need to add the likelihood function. The #3 MO scheme is
slightly better than the #1 and the #2 MO schemes for most of scenarios.

On the other hand, the MO schemes perform much better than the ML scheme on improving the magni-
tude of the fused precipitation data at the finer resolution. As shown in Figure 6, the lower and upper quar-
tiles, the means and medians of the DRMSE7 of the MO schemes are clearly higher than the corresponding
counterparts of the ML scheme for all of the 12 scenarios. The differences between DRMSE7 of the MO
schemes and DRMSE7 of the ML scheme are also examined using the Kolmogorov-Smirnov test (at 1% sig-
nificant level) similar to the correlation cases shown in Figure 5. Again the test results indicate that all of the
differences are statistically significant. This implies that the MO schemes are significantly better than the ML
scheme in terms of improving the magnitudes of the fused precipitation at the finer spatial resolution using
the MKS algorithm. Among the three MO schemes, the #1 and the #2 MO schemes behave similarly while
the #3 MO scheme also performs better than the #1 and #2 MO schemes as indicated by its higher values
of the lower and the upper quartiles, the mean and the median.

Moreover, the performance of the #3 MO scheme is illustrated with an example having very noisy data. Figure
7 shows a precipitation event before (i.e., X2

5 and X2
7 ) and after (i.e., X1

5 and X1
7 ) the precipitation data fusion

using the MKS algorithm with the #3 MO scheme. In the figure, the synthetically generated noisy precipitation
fields (X2

5 and X2
7 ) are for the precipitation event at 09Z 22 September 2003 with n552:0 and n752:0. The

true precipitation image of this event at scale 7 is shown in Figure 2. Comparing the precipitation field shown
in Figure 2 with those of X2

5 and X2
7 shown in Figure 7, the spatial pattern of the true precipitation field has

been heavily contaminated in the synthetic precipitation fields at both scales 5 and 7. After the data fusion
using the MKS algorithm with the #3 MO scheme, the original spatial pattern can be mostly restored at both
scales. However, the fused precipitation data at scale 7 have lost some details at this scale. This is a common
drawback of improving precipitation data at a fine resolution with precipitation data from a coarser resolution.
It is also partially caused by one of the constraints of the MO schemes, i.e., the one shown in equation (6). A
relaxation of equation (6) may reduce the effect of losing details at the finer resolution.
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4.3.2. Experiment With Multiplicative Errors
In this section, performances of the ML and the MO schemes are investigated with multiplicative
errors and compared to the findings obtained with the additive errors as discussed in the previous
section (i.e., section 4.3.1). In particular, the #3 MO scheme is used to compare with the results from
the ML scheme.

The box plots of DCorr and DRMSE are shown, respectively, in Figure 8 for the ML and the #3 MO schemes
at scales 5 and 7. Comparing Figure 8 to Figures 5 and 6, it can be seen that results with the multiplicative
error model are similar to those with the additive error model. That is, for the case with the multiplicative
errors, the MO scheme also performs slightly better than the ML scheme for the coarse spatial resolution.
Specifically, the lower and upper quartiles, and the median of DCorr and DRMSE obtained with the MO
scheme are slightly higher than those obtained with the ML scheme at scale 5. The MO scheme performs
much better than the ML scheme at the finer spatial resolution, as indicated by the lower and upper quar-
tiles, and the median of DCorr and DRMSE. Also, the relative behaviors between the MO scheme and the
ML scheme that are associated with the multiplicative error model (see Figure 8) are similar to those with
the additive error model as shown in Figures 5 and 6. In other words, Figure 8 clearly shows that the results
and findings from this study using the additive error model are general and that they are similar to those
using the multiplicative error model.

Figure 6. Box plots of DRMSE5 and DRMSE7 for the precipitation data fusion results using the ML scheme and the MO schemes for the 12 scenarios with the additive error model.
Descriptions of symbols are similar to those in Figure 5.
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Figure 9 shows the scatter plots between Corr– and Corr1 and RMSE– and RMSE1 for scales 5 and 7, respec-
tively, where the multiplicative error model is used. From the scatter plots of RMSE– and RMSE1 in Figure 9,
it can be clearly seen that the MO scheme has better performance than the ML scheme on reducing RMSE
when the input data have large errors, especially large errors at the finer spatial resolution. When the input
data are less noisy, the difference in performance between the two schemes becomes smaller. In addition,
Figure 9 provides an overview of how the MO and the ML schemes perform at each of the 2246 individual
precipitation fields with varying levels of errors.

5. Conclusions

This paper presents a general multi-objective (MO) parameter estimation framework for the Multiscale Kal-
man Smoother (MKS) algorithm used for precipitation data fusion. Three parameter estimation schemes
have been introduced with the MKS algorithm to avoid over-smoothing of the precipitation data fields. For-
mulations are established for the three MO parameter estimation schemes based on the enforcement of
the objectives of the multiscale precipitation data fusion. The objective functions associated with each of
the specific MO schemes have clear physical meanings that are related to the precipitation data. This helps
making the fused precipitation data fields meet the expectations at multiple scales. A Monte Carlo experi-
ment has been conducted to investigate the limitations of the maximum likelihood (ML) scheme for the
multiscale precipitation data fusion and to justify the rationale in developing the MO schemes, which signif-
icantly enhance the performance of MKS at the finer resolutions. The three proposed MO schemes have

Figure 7. Example of multiscale precipitation data fusion using the MKS algorithm with the MO scheme (n552:0 and n752:0) at 09Z 22
September2003. X2

5 and X1
5 denote synthetic precipitation data and fused precipitation data at 1/8� resolution (scale 5). X2

7 and X1
7

denote synthetic precipitation data and fused precipitation data at 1/32� resolution (scale 7).
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been extensively eval-
uated against the con-
ventional ML scheme.
Altogether 2246 precip-
itation events/fields
from 2003 were eval-
uated in terms of the
improvement regarding
the spatial patterns and
the magnitudes of the
precipitation data
based on the results of
the 12 scenario
experiments.

Results from this study can be summarized in two aspects. First, the limitations of the ML scheme for
estimating the parameters of the MKS algorithm have been clearly demonstrated for the real world pre-
cipitation data fusion applications. This ML scheme does not work well at fine resolutions even though
it is effective at coarser resolutions. At the fine resolution, it is possible that only limited improvements
can be achieved on the fused precipitation data fields in their spatial patterns and magnitudes using
the MKS algorithm with the ML scheme. The reasons are due to the combination of (1) the assumptions
made in the ML scheme are not always met, and (2) local optima instead of global optima are obtained.
In order to improve the performance at the fine resolutions, we have developed a multiobjective (MO)
parameter estimation framework for the MKS algorithm. In the MO framework, we formulated two core
objective functions (i.e., equations (5) and (6)) to simultaneously improve the spatial patterns and the
magnitudes of the fused precipitation data fields at multiple scales. Three different schemes have been
investigated with the MO framework to reduce oversmoothing of the precipitation details at the fine
resolution.

Comparisons between our three new MO schemes and the ML scheme via a large number of precipitation
events/fields over a large study domain show that the proposed three MO schemes have significantly
better performances on improving the qualities of the fused precipitation data fields at the fine spatial resolu-
tion. The improvements brought by the MO schemes are even more significant when the precipitation data at

the fine spatial resolu-
tions are much noisier
than the precipitation
data at the coarser spa-
tial resolutions. At the
coarse spatial resolu-
tion, if the precipitation
data are noisier than
the precipitation data
at the finer resolution,
the new MO schemes
also perform better
than or comparable to
the ML scheme on
improving the spatial
patterns and the
magnitudes of
precipitation data
fields. Among the
three MO schemes,
the #1 and the #2
schemes work similarly
at both spatial scales.

Figure 8. Box plots of DCorr and DRMSE for the precipitation data fusion results with the multiplica-
tive error model.

Figure 9. Scatter plots of Corr– and Corr1 and scatter plots of RMSE– and RMSE1 at scale 5 and scale 7
for the precipitation data results with the multiplicative error model.

Water Resources Research 10.1002/2013WR014942

WANG AND LIANG VC 2014. American Geophysical Union. All Rights Reserved. 8691



This means that the likelihood function (i.e., equation (4)) could be mostly represented by equations (5)–(8).
The #3 scheme results in a better performance of the MKS algorithm than those of the #1 and #2 schemes.
This means that the objective functions of the information entropy can bring in more useful information to
fused precipitation data than the two objective functions of maximization (i.e., equations (7) and (8)). The #3
MO scheme is a better choice than the #1 MO scheme only if the computational resources are sufficient. Oth-
erwise, the #1 MO scheme is a better choice.

Second, our numerical results have shown that the MO schemes can effectively represent the main features
characterized by the ML scheme for the fused precipitation data fields at the fine resolution. In section 4.3,
the #2 MO scheme does not show advantages to the #1 MO scheme for most cases. The advantages are, in
fact, negligible if any. The #3 MO scheme outperforms the #2 MO scheme generally. This implies that the
two objective functions of the information entropy may represent more information than the log-likelihood
function. Therefore, results obtained from the #3 MO scheme can be considered to have similar or even
more strength than that with the ML scheme.

In summary, the MO parameter estimation framework, in reference to either the #1, #2, or #3 MO scheme, is
effective for the MKS algorithm in fusing precipitation data, especially for deriving precipitation data prod-
ucts at finer spatial resolutions. On the other hand, the MO framework takes longer computational time due
to its multiobjective optimization nature. Therefore, if the fused precipitation data products are desired at
coarser spatial resolutions, the ML scheme is recommended. But if the fused precipitation data are desired at
finer spatial resolutions, the MO framework is recommended due to its much better performance at the finer
spatial resolutions while its performance at the coarse resolutions is also very good. The concepts and ideas of
the proposed MO framework in combining with the MKS algorithm are general, and thus can also be applied,
in combination, to other approaches as well.

The main limitation of this study stems from the use of hypothetical experiments with synthetic precipita-
tion data. In the next step of the research, we plan to derive new precipitation data sets based on real data,
such as the NLDAS precipitation data and the NEXRAD MPE data. Furthermore, the quality of the derived
precipitation data will be evaluated with hydrological models against observations of stream flow, evapo-
transpiration, and soil moisture contents. For the further development of data fusion algorithm and parame-
ter estimation method, we also plan to combine the Particle Filter (PF) [Pitt and Shephard, 1999] with the
framework of our MKS algorithm. With many successes in hydrology applications [Moradkhani et al., 2005],
the PF algorithm could help relaxing the linear assumption on state-space equations and the Gaussian
assumptions on error terms in the MKS framework. We plan to combine the PF method with the MKS algo-
rithm and conduct a systematic assessment of such an approach. We also plan to compare it with the
approach of transferring the data of non-Gaussian errors to meet the Gaussian error assumption. We will
assess the strength and weakness of each approach in terms of the performance and computational cost. In
our plan, the state variables and parameters will eventually be estimated simultaneously based on Bayesian
inference. If this new method succeeds, choosing error models will no longer be an issue of the precipita-
tion data fusion using the MKS algorithm.
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